Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
1.
Anal Chem ; 96(19): 7380-7385, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38693701

RESUMO

Ion mobility-mass spectrometry (IM-MS) offers benefits for lipidomics by obtaining IM-derived collision cross sections (CCS), a conditional property of an ion that can enhance lipid identification. While drift tube (DT) IM-MS retains a direct link to the primary experimental method to derive CCS values, other IM technologies rely solely on external CCS calibration, posing challenges due to dissimilar chemical properties between lipids and calibrants. To address this, we introduce MobiLipid, a novel tool facilitating the CCS quality control of IM-MS lipidomics workflows by internal standardization. MobiLipid utilizes a newly established DTCCSN2 library for uniformly (U)13C-labeled lipids, derived from a U13C-labeled yeast extract, containing 377 DTCCSN2 values. This automated open-source R Markdown tool enables internal monitoring and straightforward compensation for CCSN2 biases. It supports lipid class- and adduct-specific CCS corrections, requiring only three U13C-labeled lipids per lipid class-adduct combination across 10 lipid classes without requiring additional external measurements. The applicability of MobiLipid is demonstrated for trapped IM (TIM)-MS measurements of an unlabeled yeast extract spiked with U13C-labeled lipids. Monitoring the CCSN2 biases of TIMCCSN2 values compared to DTCCSN2 library entries utilizing MobiLipid resulted in mean absolute biases of 0.78% and 0.33% in positive and negative ionization mode, respectively. By applying the CCS correction integrated into the tool for the exemplary data set, the mean absolute CCSN2 biases of 10 lipid classes could be reduced to approximately 0%.


Assuntos
Lipidômica , Lipídeos , Espectrometria de Massas , Lipidômica/métodos , Lipídeos/química , Lipídeos/análise , Espectrometria de Mobilidade Iônica/métodos , Controle de Qualidade , Padrões de Referência , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo
2.
Microb Cell Fact ; 23(1): 43, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331812

RESUMO

BACKGROUND: Specific productivity (qP) in yeast correlates with growth, typically peaking at intermediate or maximum specific growth rates (µ). Understanding the factors limiting productivity at extremely low µ might reveal decoupling strategies, but knowledge of production dynamics and physiology in such conditions is scarce. Retentostats, a type of continuous cultivation, enable the well-controlled transition to near-zero µ through the combined retention of biomass and limited substrate supply. Recombinant Komagataella phaffii (syn Pichia pastoris) secreting a bivalent single domain antibody (VHH) was cultivated in aerobic, glucose-limited retentostats to investigate recombinant protein production dynamics and broaden our understanding of relevant physiological adaptations at near-zero growth conditions. RESULTS: By the end of the retentostat cultivation, doubling times of approx. two months were reached, corresponding to µ = 0.00047 h-1. Despite these extremely slow growth rates, the proportion of viable cells remained high, and de novo synthesis and secretion of the VHH were observed. The average qP at the end of the retentostat was estimated at 0.019 mg g-1 h-1. Transcriptomics indicated that genes involved in protein biosynthesis were only moderately downregulated towards zero growth, while secretory pathway genes were mostly regulated in a manner seemingly detrimental to protein secretion. Adaptation to near-zero growth conditions of recombinant K. phaffii resulted in significant changes in the total protein, RNA, DNA and lipid content, and lipidomics revealed a complex adaptation pattern regarding the lipid class composition. The higher abundance of storage lipids as well as storage carbohydrates indicates that the cells are preparing for long-term survival. CONCLUSIONS: In conclusion, retentostat cultivation proved to be a valuable tool to identify potential engineering targets to decouple growth and protein production and gain important insights into the physiological adaptation of K. phaffii to near-zero growth conditions.


Assuntos
Saccharomycetales , Saccharomycetales/genética , Saccharomycetales/metabolismo , Saccharomyces cerevisiae/metabolismo , Perfilação da Expressão Gênica , Pichia/metabolismo , Proteínas Recombinantes/metabolismo , Lipídeos
3.
Anal Chim Acta ; 1279: 341740, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37827628

RESUMO

The chemical exposome consists of environmental exposures experienced throughout a lifetime but to date analytical approaches to investigate the plethora of low-abundance chemicals remain very limited. Liquid chromatography high-resolution mass spectrometry (HRMS) is commonly applied in untargeted exposome-wide analyses of xenobiotics in biological samples; however, human biomonitoring approaches usually utilize targeted low-resolution triple quadrupole (QQQ) mass spectrometry tailored to a small number of chemicals. HRMS can cover a broader chemical space but the detection of molecules from low-level exposure amidst a background of highly-abundant endogenous molecules has proven to be difficult. In this study, a triple quadrupole (QQQ) and a high-resolution mass spectrometer (HRMS) with identical chromatography were utilized to determine the limits of quantitation (LOQ) of >100 xenobiotics and estrogenic hormones in pure solvent and human urine. Both instrumental platforms are currently applied in exposure assessment studies and were operated in their most frequently used acquisition mode (full scan for HRMS and multiple reaction monitoring for QQQ) to mimic typical applications. For HRMS analyses, the median LOQ was 0.9 and 1.2 ng/mL in solvent and urine, respectively, while for low-resolution QQQ measurements, the median LOQ was 0.1 and 0.2 ng/mL in solvent and urine, respectively. To evaluate the calculated LOQs in complex biological samples, spot urine samples from 24 Nigerian female volunteers were investigated. The higher LOQ values for HRMS resulted in less quantified low-abundance analytes and decreased the number of compounds detected below the LOQ. Even at chronic low-dose exposure, such compounds might be relevant for human health because of high individual toxicity or potential mixture effects. Nevertheless, HRMS enabled the additional screening for exposure to unexpected/unknown analytes, including emerging compounds and biotransformation products. Therefore, a synergy between high- and low-resolution mass spectrometry may currently be the best option to elucidate and quantify xenobiotics in comprehensive exposome-wide association studies (ExWAS).


Assuntos
Expossoma , Feminino , Humanos , Xenobióticos , Espectrometria de Massas/métodos , Exposição Ambiental , Solventes
4.
Adv Sci (Weinh) ; 10(32): e2301939, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37752764

RESUMO

The leading first-in-class ruthenium-complex BOLD-100 currently undergoes clinical phase-II anticancer evaluation. Recently, BOLD-100 is identified as anti-Warburg compound. The present study shows that also deregulated lipid metabolism parameters characterize acquired BOLD-100-resistant colon and pancreatic carcinoma cells. Acute BOLD-100 treatment reduces lipid droplet contents of BOLD-100-sensitive but not -resistant cells. Despite enhanced glycolysis fueling lipid accumulation, BOLD-100-resistant cells reveal diminished lactate secretion based on monocarboxylate transporter 1 (MCT1) loss mediated by a frame-shift mutation in the MCT1 chaperone basigin. Glycolysis and lipid catabolism converge in the production of protein/histone acetylation substrate acetyl-coenzymeA (CoA). Mass spectrometric and nuclear magnetic resonance analyses uncover spontaneous cell-free BOLD-100-CoA adduct formation suggesting acetyl-CoA depletion as mechanism bridging BOLD-100-induced lipid metabolism alterations and histone acetylation-mediated gene expression deregulation. Indeed, BOLD-100 treatment decreases histone acetylation selectively in sensitive cells. Pharmacological targeting confirms histone de-acetylation as central mode-of-action of BOLD-100 and metabolic programs stabilizing histone acetylation as relevant Achilles' heel of acquired BOLD-100-resistant cell and xenograft models. Accordingly, histone gene expression changes also predict intrinsic BOLD-100 responsiveness. Summarizing, BOLD-100 is identified as epigenetically active substance acting via targeting several onco-metabolic pathways. Identification of the lipid metabolism as driver of acquired BOLD-100 resistance opens novel strategies to tackle therapy failure.


Assuntos
Antineoplásicos , Histonas , Compostos Organometálicos , Humanos , Histonas/metabolismo , Metabolismo dos Lipídeos , Acetilação , Acetilcoenzima A/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Lipídeos
5.
Biotechnol J ; 18(12): e2300033, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37668396

RESUMO

Amino acids are the building blocks of proteins. In this respect, a reciprocal effect of recombinant protein production on amino acid biosynthesis as well as the impact of the availability of free amino acids on protein production can be anticipated. In this study, the impact of engineering the amino acid metabolism on the production of recombinant proteins was investigated in the yeast Pichia pastoris (syn Komagataella phaffii). Based on comprehensive systems-level analyses of the metabolomes and transcriptomes of different P. pastoris strains secreting antibody fragments, cell engineering targets were selected. Our working hypothesis that increasing intracellular amino acid levels could help unburden cellular metabolism and improve recombinant protein production was examined by constitutive overexpression of genes related to amino acid metabolism. In addition to 12 genes involved in specific amino acid biosynthetic pathways, the transcription factor GCN4 responsible for regulation of amino acid biosynthetic genes was overexpressed. The production of the used model protein, a secreted carboxylesterase (CES) from Sphingopyxis macrogoltabida, was increased by overexpression of pathway genes for alanine and for aromatic amino acids, and most pronounced, when overexpressing the regulator GCN4. The analysis of intracellular amino acid levels of selected clones indicated a direct linkage of improved recombinant protein production to the increased availability of intracellular amino acids. Finally, fed batch cultures showed that overexpression of GCN4 increased CES titers 2.6-fold, while the positive effect of other amino acid synthesis genes could not be transferred from screening to bioreactor cultures.


Assuntos
Reatores Biológicos , Pichia , Pichia/genética , Pichia/metabolismo , Proteínas Recombinantes/metabolismo , Aminoácidos/metabolismo
6.
Metallomics ; 15(8)2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37505477

RESUMO

Thiosemicarbazones (TSCs) are a class of biologically active compounds with promising anticancer activity. Their typical mechanism, especially of the clinically far developed representative Triapine, is chelation of iron (Fe), with the Fe-containing enzyme ribonucleotide reductase as primary intracellular target. However, for the subclass of terminally disubstituted, nanomolar-active derivatives like Dp44mT and Me2NNMe2, recent findings suggest that the chelation, stability, and reduction properties of the copper(II) (Cu) complexes are essential for their modes of action. Consequently, it is important to elucidate whether blood serum Cu(II) is a potential metal source for these TSCs. To gain more insights, the interaction of Triapine, Dp44mT or Me2NNMe2 with purified human serum albumin (HSA) as the main pool of labile Cu(II) was investigated by UV-vis and electron paramagnetic resonance measurements. Subsequently, a size-exclusion chromatography inductively coupled plasma mass spectrometry method for the differentiation of Cu species in serum was developed, especially separating the non-labile Cu enzyme ceruloplasmin from HSA. The results indicate that the TSCs specifically chelate copper from the N-terminal Cu-binding site of HSA. Furthermore, the Cu(II)-TSC complexes were shown to form ternary HSA conjugates, most likely via histidine. Noteworthy, Fe-chelation from transferrin was not overserved, even not for Triapine. In summary, the labile Cu pool of HSA is a potential source for Cu-TSC complex formation and, consequently, distinctly influences the anticancer activity and pharmacological behavior of TSCs.


Assuntos
Antineoplásicos , Tiossemicarbazonas , Humanos , Albumina Sérica Humana , Cobre/química , Tiossemicarbazonas/farmacologia , Tiossemicarbazonas/química , Quelantes/química , Antineoplásicos/farmacologia , Antineoplásicos/química
7.
Pharmaceutics ; 15(7)2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37514061

RESUMO

The synthesis, characterization and biological activity of tungstenocenes with varying biologically active (O,O-), (S,O-) and (N,O-) chelates are described. Complexes were characterized by 1H and 13C NMR, elemental analysis, ESI-mass spectrometry, FT-IR spectroscopy and X-ray diffraction analysis. The aqueous stability was studied by UV/Vis spectroscopy and the WIV to WV process by cyclic voltammetry. The cytotoxicity was determined by the MTT assay in A549, CH1/PA-1 and SW480 cancer cells as well as in IMR-90 human fibroblasts. Extensive biological evaluation was performed in three other human cancer cell lines (HCT116, HT29 and MCF-7) in monolayer and multicellular tumor spheroid cultures to better understand the mode of action. Lead compounds showed promising in vitro anticancer activity in all cancer cell lines. Further studies yielded important insights into apoptosis induction, ROS generation, different patterns in metal distribution (detected by LA-ICP-TOF-MS), changes in KI67 (proliferation marker) expression and DNA interactions. The results based on qualitative and quantitative research designs show that complexes containing (S,O-) chelates are more active than their (O,O-) and (N,O-) counterparts. The most striking results in spheroid models are the high antiproliferative capacity and the different distribution pattern of two complexes differing only in a W-S or W-O bond.

8.
Anal Chim Acta ; 1265: 341274, 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37230568

RESUMO

Lipidomics studies strive for a comprehensive identification and quantification of lipids. While reversed phase (RP) liquid chromatography (LC) coupled to high resolution mass spectrometry (MS) offers unrivalled selectivity and thus is the preferred method for lipid identification, accurate lipid quantification remains challenging. The widely adopted one-point lipid class specific quantification (one internal standard per lipid class) suffers from the fact that ionization of internal standard and target lipid occurs under different solvent composition as a consequence of chromatographic separation. To address this issue, we established a dual flow injection and chromatography setup that allows to control solvent conditions during ionization enabling isocratic ionization while running a RP gradient through the use of a counter-gradient. Using this dual LC pump platform, we investigated the impact of solvent conditions within a RP gradient on ionization response and arising quantification biases. Our results confirmed that changing solvent composition significantly influences ionization response. Quantification of human plasma (SRM 1950) lipids under gradient and isocratic ionization conditions further confirmed these findings as significant differences between the two conditions were found for the majority of lipids. While the quantity of sphingomyelins with >40 C atoms was consistently overestimated under gradient ionization, isocratic ionization improved their recovery compared to consensus values. However, the limitation of consensus values was demonstrated as overall only small changes in z-score were observed because of high uncertainties of the consensus values. Furthermore, we observed a trueness bias between gradient and isocratic ionization when quantifying a panel of lipid species standards which is highly dependent on lipid class and ionization mode. Uncertainty calculations under consideration of the trueness bias as RP gradient uncertainty revealed that especially ceramides with >40 C atoms had a high bias leading to total combined uncertainties of up to 54%. The assumption of isocratic ionization significantly decreases total measurement uncertainty and highlights the importance of studying the trueness bias introduced by a RP gradient to reduce quantification uncertainty.


Assuntos
Cromatografia de Fase Reversa , Lipídeos , Humanos , Lipídeos/análise , Espectrometria de Massas/métodos , Cromatografia de Fase Reversa/métodos , Lipidômica , Solventes , Cromatografia Líquida de Alta Pressão/métodos
9.
Anal Chem ; 95(19): 7804-7812, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37122168

RESUMO

Laser ablation (LA) in combination with inductively coupled plasma time-of-flight mass spectrometry (ICP-TOFMS) enables monitoring of elements from the entire mass range for every pixel, regardless of the isotopes of interest for a certain application. This provides nontargeted multi-element (bio-)imaging capabilities and the unique possibility to screen for elements that were initially not expected in the sample. Quantification of a large range of elements is limited as the preparation of highly multiplexed calibration standards for bioimaging applications by LA-ICP-(TOF)MS is challenging. In this study, we have developed a workflow for semiquantitative analysis by LA-ICP-TOFMS based on multi-element gelatin micro-droplet standards. The presented approach is intended for the mapping of biological samples due to the requirement of matrix-matched standards for accurate quantification in LA-ICPMS, a prerequisite that is given by the use of gelatin-based standards. A library of response factors was constructed based on 72 elements for the semiquantitative calculations. The presented method was evaluated in two stages: (i) on gelatin samples with known elemental concentrations and (ii) on real-world samples that included prime examples of bioimaging (mouse spleen and tumor tissue). The developed semiquantification approach was based on 10 elements as calibration standards and provided the determination of 136 nuclides of 63 elements, with errors below 25%, and for half of the nuclides, below 10%. A web application for quantification and semiquantification of LA-ICP(-TOF)MS data was developed, and a detailed description is presented to easily allow others to use the presented method.


Assuntos
Gelatina , Terapia a Laser , Camundongos , Animais , Espectrometria de Massas/métodos , Análise Espectral , Alimentos
10.
JACS Au ; 3(2): 419-428, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36873697

RESUMO

In this study, we present a workflow that enables spatial single-cell metallomics in tissue decoding the cellular heterogeneity. Low-dispersion laser ablation in combination with inductively coupled plasma time-of-flight mass spectrometry (LA-ICP-TOFMS) provides mapping of endogenous elements with cellular resolution at unprecedented speed. Capturing the heterogeneity of the cellular population by metals only is of limited use as the cell type, functionality, and cell state remain elusive. Therefore, we expanded the toolbox of single-cell metallomics by integrating the concepts of imaging mass cytometry (IMC). This multiparametric assay successfully utilizes metal-labeled antibodies for cellular tissue profiling. One important challenge is the need to preserve the original metallome in the sample upon immunostaining. Therefore, we studied the impact of extensive labeling on the obtained endogenous cellular ionome data by quantifying elemental levels in consecutive tissue sections (with and without immunostaining) and correlating elements with structural markers and histological features. Our experiments showed that the elemental tissue distribution remained intact for selected elements such as sodium, phosphorus, and iron, while absolute quantification was precluded. We hypothesize that this integrated assay not only advances single-cell metallomics (enabling to link metal accumulation to multi-dimensional characterization of cells/cell populations), but in turn also enhances selectivity in IMC, as in selected cases, labeling strategies can be validated by elemental data. We showcase the power of this integrated single-cell toolbox using an in vivo tumor model in mice and provide mapping of the sodium and iron homeostasis as linked to different cell types and function in mouse organs (such as spleen, kidney, and liver). Phosphorus distribution maps added structural information, paralleled by the DNA intercalator visualizing the cellular nuclei. Overall, iron imaging was the most relevant addition to IMC. In tumor samples, for example, iron-rich regions correlated with high proliferation and/or located blood vessels, which are key for potential drug delivery.

11.
Plants (Basel) ; 12(3)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36771598

RESUMO

BACKGROUND: An important goal of modern medicine is the development of products deriving from natural sources to improve environmental sustainability. In this study, humic substances (HS) and compost teas (CTs) extracted from artichoke (ART) and coffee grounds (COF) as recycled biomasses were employed on Ocimum basilicum plants to optimize the yield of specific metabolites with nutraceutical and antibacterial features by applying sustainable strategies. METHODS: The molecular characteristics of compost derivates were elucidated by Nuclear Magnetic Resonance spectroscopy to investigate the structure-activity relationship between organic extracts and their bioactive potential. Additionally, combined untargeted and targeted metabolomics workflows were applied to plants treated with different concentrations of compost extracts. RESULTS: The substances HS-ART and CT-COF improved both antioxidant activity (TEAC values between 39 and 55 µmol g-1) and the antimicrobial efficacy (MIC value between 3.7 and 1.3 µg mL-1) of basil metabolites. The metabolomic approach identified about 149 metabolites related to the applied treatments. Targeted metabolite quantification further highlighted the eliciting effect of HS-ART and CT-COF on the synthesis of aromatic amino acids and phenolic compounds for nutraceutical application. CONCLUSIONS: The combination of molecular characterization, biological assays, and an advanced metabolomic approach, provided innovative insight into the valorization of recycled biomass to increase the availability of natural compounds employed in the medical field.

12.
Angew Chem Int Ed Engl ; 62(10): e202217233, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36628505

RESUMO

AuI -carbene and PtIV -AuI -carbene prodrugs display low to sub-µM activity against several cancer cell lines and overcome cisplatin (cisPt) resistance. Linking a cisPt-derived PtIV (phenylbutyrate) complex to a AuI -phenylimidazolylidene complex 2, yielded the most potent prodrug. While in vivo tests against Lewis Lung Carcinoma showed that the prodrug PtIV (phenylbutyrate)-AuI -carbene (7) and the 1 : 1 : 1 co-administration of cisPt: phenylbutyrate:2 efficiently inhibited tumor growth (≈95 %), much better than 2 (75 %) or cisPt (84 %), 7 exhibited only 5 % body weight loss compared to 14 % for 2, 20 % for cisPt and >30 % for the co-administration. 7 was much more efficient than 2 at inhibiting TrxR activity in the isolated enzyme, in cells and in the tumor, even though it was much less efficient than 2 at binding to selenocysteine peptides modeling the active site of TrxR. Organ distribution and laser-ablation (LA)-ICP-TOFMS imaging suggest that 7 arrives intact at the tumor and is activated there.


Assuntos
Antineoplásicos , Pró-Fármacos , Antineoplásicos/química , Fenilbutiratos , Pró-Fármacos/química , Linhagem Celular Tumoral , Cisplatino/química
13.
JACS Au ; 2(11): 2466-2480, 2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36465531

RESUMO

Gangliosides are an indispensable glycolipid class concentrated on cell surfaces with a critical role in stem cell differentiation. Nonetheless, owing to the lack of suitable methods for scalable analysis covering the full scope of ganglioside molecular diversity, their mechanistic properties in signaling and differentiation remain undiscovered to a large extent. This work introduces a sensitive and comprehensive ganglioside assay based on liquid chromatography, high-resolution mass spectrometry, and multistage fragmentation. Complemented by an open-source data evaluation workflow, we provide automated in-depth lipid species-level and molecular species-level annotation based on decision rule sets for all major ganglioside classes. Compared to conventional state-of-the-art methods, the presented ganglioside assay offers (1) increased sensitivity, (2) superior structural elucidation, and (3) the possibility to detect novel ganglioside species. A major reason for the highly improved sensitivity is the optimized spectral readout based on the unique capability of two parallelizable mass analyzers for multistage fragmentation. We demonstrated the high-throughput universal capability of our novel analytical strategy by identifying 254 ganglioside species. As a proof of concept, 137 unique gangliosides were annotated in native and differentiated human mesenchymal stem cells including 78 potential cell-state-specific markers and 38 previously unreported gangliosides. A general increase of the ganglioside numbers upon differentiation was observed as well as cell-state-specific clustering based on the ganglioside species patterns. The combination of the developed glycolipidomics assay with the extended automated annotation tool enables comprehensive in-depth ganglioside characterization as shown on biological samples of interest. Our results suggest ganglioside patterns as a promising quality control tool for stem cells and their differentiation products. Additionally, we believe that our analytical workflow paves the way for probing glycolipid-based biochemical processes shedding light on the enigmatic processes of gangliosides and glycolipids in general.

14.
JACS Au ; 2(11): 2548-2560, 2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36465551

RESUMO

The totality of environmental exposures and lifestyle factors, commonly referred to as the exposome, is poorly understood. Measuring the myriad of chemicals that humans are exposed to is immensely challenging, and identifying disrupted metabolic pathways is even more complex. Here, we present a novel technological approach for the comprehensive, rapid, and integrated analysis of the endogenous human metabolome and the chemical exposome. By combining reverse-phase and hydrophilic interaction liquid chromatography (HILIC) and fast polarity-switching, molecules with highly diverse chemical structures can be analyzed in 15 min with a single analytical run as both column's effluents are combined before analysis. Standard reference materials and authentic standards were evaluated to critically benchmark performance. Highly sensitive median limits of detection (LODs) with 0.04 µM for >140 quantitatively assessed endogenous metabolites and 0.08 ng/mL for the >100 model xenobiotics and human estrogens in solvent were obtained. In matrix, the median LOD values were higher with 0.7 ng/mL (urine) and 0.5 ng/mL (plasma) for exogenous chemicals. To prove the dual-column approach's applicability, real-life urine samples from sub-Saharan Africa (high-exposure scenario) and Europe (low-exposure scenario) were assessed in a targeted and nontargeted manner. Our liquid chromatography high-resolution mass spectrometry (LC-HRMS) approach demonstrates the feasibility of quantitatively and simultaneously assessing the endogenous metabolome and the chemical exposome for the high-throughput measurement of environmental drivers of diseases.

15.
Front Mol Biosci ; 9: 1055356, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36518851

RESUMO

More than a decade ago, studies on cellular cisplatin accumulation via active membrane transport established the role of the high affinity copper uptake protein 1 (CTR1) as a main uptake route besides passive diffusion. In this work, CTR1 expression, cisplatin accumulation and intracellular copper concentration was assessed for single cells revisiting the case of CTR1 in the context of acquired cisplatin resistance. The single-cell workflow designed for in vitro experiments enabled quantitative imaging at resolutions down to 1 µm by laser ablation-inductively coupled plasma-time-of-flight mass spectrometry (LA-ICP-TOFMS). Cisplatin-sensitive ovarian carcinoma cells A2780 as compared to the cisplatin-resistant subline A2780cis were investigated. Intracellular cisplatin and copper levels were absolutely quantified for thousands of individual cells, while for CTR1, relative differences of total CTR1 versus plasma membrane-bound CTR1 were determined. A markedly decreased intracellular cisplatin concentration accompanied by reduced copper concentrations was observed for single A2780cis cells, along with a distinctly reduced (total) CTR1 level as compared to the parental cell model. Interestingly, a significantly different proportion of plasma membrane-bound versus total CTR1 in untreated A2780 as compared to A2780cis cells was observed. This proportion changed in both models upon cisplatin exposure. Statistical analysis revealed a significant correlation between total and plasma membrane-bound CTR1 expression and cisplatin accumulation at the single-cell level in both A2780 and A2780cis cells. Thus, our study recapitulates the crosstalk of copper homeostasis and cisplatin uptake, and also indicates a complex interplay between subcellular CTR1 localization and cellular cisplatin accumulation as a driver for acquired resistance development.

16.
Pharmaceutics ; 14(11)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36432656

RESUMO

The main purpose of this study was to synthesize a new set of naphthoquinone-based ruthenium(II) arene complexes and to develop an understanding of their mode of action. This study systematically reviews the steps of synthesis, aiming to provide a simplified approach using microwave irradiation. The chemical structures and the physicochemical properties of this novel group of compounds were examined by 1H-NMR and 13C-NMR spectroscopy, X-ray diffractometry, HPLC-MS and supporting DFT calculations. Several aspects of the biological activity were investigated in vitro, including short- and long-term cytotoxicity tests, cellular accumulation studies, detection of reactive oxygen species generation, apoptosis induction and NAD(P)H:quinone oxidoreductase 1 (NQO1) activity as well as cell cycle analysis in A549, CH1/PA-1, and SW480 cancer cells. Furthermore, the DNA interaction ability was studied in a cell-free assay. A positive correlation was found between cytotoxicity, lipophilicity and cellular accumulation of the tested complexes, and the results offer some important insights into the effects of the arene. The most obvious finding to emerge from this study is that the usually very chemosensitive CH1/PA-1 teratocarcinoma cells showed resistance to these phthiocol-based organometallics in comparison to the usually less chemosensitive SW480 colon carcinoma cells, which pilot experiments suggest as being related to NQO1 activity.

17.
Anal Chim Acta ; 1229: 340352, 2022 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-36156231

RESUMO

Covalent or non-covalent heterogeneous multimerization of molecules associated with extracts from biological samples analyzed via LC-MS are quite difficult to recognize/annotate and therefore the prevalence of multimerization remains largely unknown. In this study, we utilized 13C labeled and unlabeled Pichia pastoris extracts to recognize heterogeneous multimers. More specifically, between 0.8% and 1.5% of the biologically-derived features detected in our experiments were confirmed to be heteromers, about half of which we could successfully annotate with monomeric partners. Interestingly, we found specific chemical classes such as nucleotides to disproportionately contribute to heteroadducts. Furthermore, we compiled these compounds into the first MS/MS library that included data from heteromultimers to provide a starting point for other labs to improve the annotation of such ions in other metabolomics data sets. Then, the detected heteromers were also searched in publicly accessible LC-MS datasets available in Metabolights, Metabolomics WB and GNPS/MassIVE to demonstrate that these newly annotated ions are also relevant to other public datasets. Furthermore, in additional datasets (Triticum aestivum, Fusarium graminearum, and Trichoderma reesei) our developed workflow also detected 0.5%-4.9% of metabolite features to originate from heterodimers, demonstrating heteroadducts to be present in metabolomics studies at a low percentage.


Assuntos
Metabolômica , Espectrometria de Massas em Tandem , Cromatografia Líquida , Íons/química , Nucleotídeos
18.
Bioinformatics ; 38(22): 5139-5140, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36165687

RESUMO

SUMMARY: Untargeted metabolomics data analysis is highly labour intensive and can be severely frustrated by both experimental noise and redundant features. Homologous polymer series is a particular case of features that can either represent large numbers of noise features or alternatively represent features of interest with large peak redundancy. Here, we present homologueDiscoverer, an R package that allows for the targeted and untargeted detection of homologue series as well as their evaluation and management using interactive plots and simple local database functionalities. AVAILABILITY AND IMPLEMENTATION: homologueDiscoverer is freely available at GitHub https://github.com/kevinmildau/homologueDiscoverer. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Software , Espectrometria de Massas em Tandem , Cromatografia Líquida , Metabolômica , Análise de Dados
19.
Front Mol Biosci ; 9: 857505, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35923463

RESUMO

Covering a wide spectrum of molecules is essential for global metabolome assessment. While metabolomics assays are most frequently carried out in microbore LC-MS analysis, reducing the size of the analytical platform has proven its ability to boost sensitivity for specific -omics applications. In this study, we elaborate the impact of LC miniaturization on exploratory small-molecule LC-MS analysis, focusing on chromatographic properties with critical impact on peak picking and statistical analysis. We have assessed a panel of small molecules comprising endogenous metabolites and environmental contaminants covering three flow regimes-analytical, micro-, and nano-flow. Miniaturization to the micro-flow regime yields moderately increased sensitivity as compared to the nano setup, where median sensitivity gains around 80-fold are observed in protein-precipitated blood plasma extract. This gain resulting in higher coverage at low µg/L concentrations is compound dependent. At the same time, the nano-LC-high-resolution mass spectrometry (HRMS) approach reduces the investigated chemical space as a consequence of the trap-and-elute nano-LC platform. Finally, while all three setups show excellent retention time stabilities, rapid gradients jeopardize the peak area repeatability of the nano-LC setup. Micro-LC offers the best compromise between improving signal intensity and metabolome coverage, despite the fact that only incremental gains can be achieved. Hence, we recommend using micro-LC for wide-target small-molecule trace bioanalysis and global metabolomics of abundant samples.

20.
Anal Chim Acta ; 1223: 340200, 2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-35999007

RESUMO

This study explores quantitative bioimaging as enabled by laser ablation-inductively coupled plasma time-of-flight mass spectrometry (LA-ICP-TOFMS), designing standardization methods based on robotic micro-droplet dispensing. The potential of producing controlled and highly precise pL-volume droplets was exploited to establish on-tissue isotope dilution and standard addition. Both strategies eliminate matrix effects and offer high metrological order traceable to SI units. The absolute quantity was obtained for µm-sized regions of interest in tissue samples, as defined by the extension of the deposited pL-volume droplet. While the gold standard isotope dilution (ID) was restricted to the accurate quantification of a single element, i.d. platinum in different tissue samples (mouse liver, spleen and tumor tissue), multiplexed matrix-matched calibration was obtained by on-tissue standard addition by depositing a dilution series of certified multi-element standards. Here, the working range was determined by the heterogeneity of the tissue samples and the background levels of elements intrinsically present and/or artificially introduced during sample preparation. Both methods, ID and standard addition served as reference methods for validation of external calibration using gelatin-based micro-droplet standards. Given full ablation, these external standards revealed a high dynamic range together with an excellent repeatability. Where applicable, the cross-validation revealed consistent quantitative results for the three quantification approaches. The comparable sensitivity obtained for standard addition and external standardization, respectively expressed as slope of the calibration function, provided proof that gelatin-based micro-droplets could serve as matrix-matched calibrations. Therefore, gelatin micro-droplets offer a valid tool for multiplexed matrix-mimicking standardization at high-throughput.


Assuntos
Gelatina , Isótopos , Animais , Calibragem , Técnicas de Diluição do Indicador , Espectrometria de Massas/métodos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA